A first-order system Petrov–Galerkin discretization for a reaction–diffusion problem on a fitted mesh
نویسندگان
چکیده
We consider the numerical solution, by a Petrov–Galerkin finite-element method, of a singularly perturbed reaction–diffusion differential equation posed on the unit square. In Lin & Stynes (2012, A balanced finite element method for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal., 50, 2729–2743), it is argued that the natural energy norm, associated with a standard Galerkin approach, is not an appropriate setting for analysing such problems, and there they propose a method for which the natural norm is ‘balanced’. In the style of a first-order system least squares method, we extend the approach of Lin & Stynes (2012, A balanced finite element method for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal., 50, 2729–2743) by introducing a constraint which simplifies the associated finite-element space and the method’s analysis. We prove robust convergence in a balanced norm on a piecewise-uniform (Shishkin) mesh, and present supporting numerical results. Finally, we demonstrate how the resulting linear systems are solved optimally using multigrid methods.
منابع مشابه
A Petrov-Galerkin discretization with optimal test space of a mild-weak formulation of convection-diffusion equations in mixed form
Motivated by the Discontinous Petrov-Galerkin method from [Numer. Methods Partial Differential Equations, 27 (2011), 70–105] by Demkowicz and Gopalakrishnan, we study a variational formulation of second order elliptic equations in mixed form, that is obtained by piecewise integrating one of the two equations in the system w.r.t. a partition of the domain into mesh cells. We apply a Petrov-Galer...
متن کاملNumerical Studies of Galerkin-type Time-discretizations Applied to Transient Convection-diffusion-reaction Equations
We deal with the numerical solution of time-dependent convection-diffusion-reaction equations. We combine the local projection stabilization method for the space discretization with two different time discretization schemes: the continuous Galerkin-Petrov (cGP) method and the discontinuous Galerkin (dG) method of polynomial of degree k. We establish the optimal error estimates and present numer...
متن کاملNumerical Study of SUPG and LPS Methods Combined with Higher Order Variational Time Discretization Schemes Applied to Time-Dependent Linear Convection-Diffusion-Reaction Equations
This paper considers the numerical solution of time-dependent convection-diffusion-reaction equations. We shall employ combinations of streamlineupwind Petrov–Galerkin (SUPG) and local projection stabilization (LPS) meth-ods in space with the higher order variational time discretization schemes. In particular, we consider time discretizations by discontinuous Galerkin (dG) meth-ods and continuo...
متن کاملNonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملAxial buckling analysis of an isotropic cylindrical shell using the meshless local Petrov-Galerkin method
In this paper the meshless local Petrov-Galerkin (MLPG) method is implemented to study the buckling of isotropic cylindrical shells under axial load. Displacement field equations, based on Donnell and first order shear deformation theory, are taken into consideration. The set of governing equations of motion are numerically solved by the MLPG method in which according to a semi-inverse method, ...
متن کامل